135 research outputs found

    When is 0.999... equal to 1?

    Full text link
    A doubly infinite sum, numerically evaluated at between 0.999 and 1.001, turns out to have a nice value

    No directed fractal percolation in zero area

    Full text link
    We show that fractal (or "Mandelbrot") percolation in two dimensions produces a set containing no directed paths, when the set produced has zero area. This improves a similar result by the first author in the case of constant retention probabilities to the case of retention probabilities approaching 1

    Random walks in random Dirichlet environment are transient in dimension d≥3d\ge 3

    Full text link
    We consider random walks in random Dirichlet environment (RWDE) which is a special type of random walks in random environment where the exit probabilities at each site are i.i.d. Dirichlet random variables. On Zd\Z^d, RWDE are parameterized by a 2d2d-uplet of positive reals. We prove that for all values of the parameters, RWDE are transient in dimension d≥3d\ge 3. We also prove that the Green function has some finite moments and we characterize the finite moments. Our result is more general and applies for example to finitely generated symmetric transient Cayley graphs. In terms of reinforced random walks it implies that directed edge reinforced random walks are transient for d≥3d\ge 3.Comment: New version published at PTRF with an analytic proof of lemma

    High-Precision Entropy Values for Spanning Trees in Lattices

    Full text link
    Shrock and Wu have given numerical values for the exponential growth rate of the number of spanning trees in Euclidean lattices. We give a new technique for numerical evaluation that gives much more precise values, together with rigorous bounds on the accuracy. In particular, the new values resolve one of their questions.Comment: 7 pages. Revision mentions alternative approach. Title changed slightly. 2nd revision corrects first displayed equatio

    Characterization of the critical values of branching random walks on weighted graphs through infinite-type branching processes

    Full text link
    We study the branching random walk on weighted graphs; site-breeding and edge-breeding branching random walks on graphs are seen as particular cases. We describe the strong critical value in terms of a geometrical parameter of the graph. We characterize the weak critical value and relate it to another geometrical parameter. We prove that, at the strong critical value, the process dies out locally almost surely; while, at the weak critical value, global survival and global extinction are both possible.Comment: 14 pages, corrected some typos and minor mistake

    Transient Random Walks in Random Environment on a Galton-Watson Tree

    Get PDF
    We consider a transient random walk (Xn)(X_n) in random environment on a Galton--Watson tree. Under fairly general assumptions, we give a sharp and explicit criterion for the asymptotic speed to be positive. As a consequence, situations with zero speed are revealed to occur. In such cases, we prove that XnX_n is of order of magnitude nΛn^{\Lambda}, with Λ∈(0,1)\Lambda \in (0,1). We also show that the linearly edge reinforced random walk on a regular tree always has a positive asymptotic speed, which improves a recent result of Collevecchio \cite{Col06}

    Dynamical percolation on general trees

    Full text link
    H\"aggstr\"om, Peres, and Steif (1997) have introduced a dynamical version of percolation on a graph GG. When GG is a tree they derived a necessary and sufficient condition for percolation to exist at some time tt. In the case that GG is a spherically symmetric tree, H\"aggstr\"om, Peres, and Steif (1997) derived a necessary and sufficient condition for percolation to exist at some time tt in a given target set DD. The main result of the present paper is a necessary and sufficient condition for the existence of percolation, at some time t∈Dt\in D, in the case that the underlying tree is not necessary spherically symmetric. This answers a question of Yuval Peres (personal communication). We present also a formula for the Hausdorff dimension of the set of exceptional times of percolation.Comment: 24 pages; to appear in Probability Theory and Related Field
    • …
    corecore